Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.

Identifieur interne : 000846 ( Main/Exploration ); précédent : 000845; suivant : 000847

Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.

Auteurs : Elizabeth A. Sabens Liedhegner [États-Unis] ; Xing-Huang Gao ; John J. Mieyal

Source :

RBID : pubmed:22066468

Descripteurs français

English descriptors

Abstract

SIGNIFICANCE

Neurodegenerative diseases are characterized by progressive loss of neurons. A common feature is oxidative stress, which arises when reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) exceed amounts required for normal redox signaling. An imbalance in ROS/RNS alters functionality of cysteines and perturbs thiol-disulfide homeostasis. Many cysteine modifications may occur, but reversible protein mixed disulfides with glutathione (GSH) likely represents the common steady-state derivative due to cellular abundance of GSH and ready conversion of cysteine-sulfenic acid and S-nitrosocysteine precursors to S-glutathionylcysteine disulfides. Thus, S-glutathionylation acts in redox signal transduction and serves as a protective mechanism against irreversible cysteine oxidation. Reversal of protein-S-glutathionylation is catalyzed specifically by glutaredoxin which thereby plays a critical role in cellular regulation. This review highlights the role of oxidative modification of proteins, notably S-glutathionylation, and alterations in thiol homeostatic enzyme activities in neurodegenerative diseases, providing insights for therapeutic intervention.

RECENT ADVANCES

Recent studies show that dysregulation of redox signaling and sulfhydryl homeostasis likely contributes to onset/progression of neurodegeneration. Oxidative stress alters the thiol-disulfide status of key proteins that regulate the balance between cell survival and cell death.

CRITICAL ISSUES

Much of the current information about redox modification of key enzymes and signaling intermediates has been gleaned from studies focused on oxidative stress situations other than the neurodegenerative diseases.

FUTURE DIRECTIONS

The findings in other contexts are expected to apply to understanding neurodegenerative mechanisms. Identification of selectively glutathionylated proteins in a quantitative fashion will provide new insights about neuropathological consequences of this oxidative protein modification.


DOI: 10.1089/ars.2011.4119
PubMed: 22066468
PubMed Central: PMC3270051


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.</title>
<author>
<name sortKey="Sabens Liedhegner, Elizabeth A" sort="Sabens Liedhegner, Elizabeth A" uniqKey="Sabens Liedhegner E" first="Elizabeth A" last="Sabens Liedhegner">Elizabeth A. Sabens Liedhegner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Neuroscience Research Center, Medical College of Wisconsin, Milwaukee</wicri:regionArea>
<wicri:noRegion>Milwaukee</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Xing Huang" sort="Gao, Xing Huang" uniqKey="Gao X" first="Xing-Huang" last="Gao">Xing-Huang Gao</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22066468</idno>
<idno type="pmid">22066468</idno>
<idno type="doi">10.1089/ars.2011.4119</idno>
<idno type="pmc">PMC3270051</idno>
<idno type="wicri:Area/Main/Corpus">000884</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000884</idno>
<idno type="wicri:Area/Main/Curation">000884</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000884</idno>
<idno type="wicri:Area/Main/Exploration">000884</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.</title>
<author>
<name sortKey="Sabens Liedhegner, Elizabeth A" sort="Sabens Liedhegner, Elizabeth A" uniqKey="Sabens Liedhegner E" first="Elizabeth A" last="Sabens Liedhegner">Elizabeth A. Sabens Liedhegner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Neuroscience Research Center, Medical College of Wisconsin, Milwaukee</wicri:regionArea>
<wicri:noRegion>Milwaukee</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Xing Huang" sort="Gao, Xing Huang" uniqKey="Gao X" first="Xing-Huang" last="Gao">Xing-Huang Gao</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Neurodegenerative Diseases (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Maladies neurodégénératives (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neurodegenerative Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Maladies neurodégénératives</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>Neurodegenerative diseases are characterized by progressive loss of neurons. A common feature is oxidative stress, which arises when reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) exceed amounts required for normal redox signaling. An imbalance in ROS/RNS alters functionality of cysteines and perturbs thiol-disulfide homeostasis. Many cysteine modifications may occur, but reversible protein mixed disulfides with glutathione (GSH) likely represents the common steady-state derivative due to cellular abundance of GSH and ready conversion of cysteine-sulfenic acid and S-nitrosocysteine precursors to S-glutathionylcysteine disulfides. Thus, S-glutathionylation acts in redox signal transduction and serves as a protective mechanism against irreversible cysteine oxidation. Reversal of protein-S-glutathionylation is catalyzed specifically by glutaredoxin which thereby plays a critical role in cellular regulation. This review highlights the role of oxidative modification of proteins, notably S-glutathionylation, and alterations in thiol homeostatic enzyme activities in neurodegenerative diseases, providing insights for therapeutic intervention.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECENT ADVANCES</b>
</p>
<p>Recent studies show that dysregulation of redox signaling and sulfhydryl homeostasis likely contributes to onset/progression of neurodegeneration. Oxidative stress alters the thiol-disulfide status of key proteins that regulate the balance between cell survival and cell death.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CRITICAL ISSUES</b>
</p>
<p>Much of the current information about redox modification of key enzymes and signaling intermediates has been gleaned from studies focused on oxidative stress situations other than the neurodegenerative diseases.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FUTURE DIRECTIONS</b>
</p>
<p>The findings in other contexts are expected to apply to understanding neurodegenerative mechanisms. Identification of selectively glutathionylated proteins in a quantitative fashion will provide new insights about neuropathological consequences of this oxidative protein modification.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22066468</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.</ArticleTitle>
<Pagination>
<MedlinePgn>543-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2011.4119</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE" NlmCategory="CONCLUSIONS">Neurodegenerative diseases are characterized by progressive loss of neurons. A common feature is oxidative stress, which arises when reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) exceed amounts required for normal redox signaling. An imbalance in ROS/RNS alters functionality of cysteines and perturbs thiol-disulfide homeostasis. Many cysteine modifications may occur, but reversible protein mixed disulfides with glutathione (GSH) likely represents the common steady-state derivative due to cellular abundance of GSH and ready conversion of cysteine-sulfenic acid and S-nitrosocysteine precursors to S-glutathionylcysteine disulfides. Thus, S-glutathionylation acts in redox signal transduction and serves as a protective mechanism against irreversible cysteine oxidation. Reversal of protein-S-glutathionylation is catalyzed specifically by glutaredoxin which thereby plays a critical role in cellular regulation. This review highlights the role of oxidative modification of proteins, notably S-glutathionylation, and alterations in thiol homeostatic enzyme activities in neurodegenerative diseases, providing insights for therapeutic intervention.</AbstractText>
<AbstractText Label="RECENT ADVANCES" NlmCategory="BACKGROUND">Recent studies show that dysregulation of redox signaling and sulfhydryl homeostasis likely contributes to onset/progression of neurodegeneration. Oxidative stress alters the thiol-disulfide status of key proteins that regulate the balance between cell survival and cell death.</AbstractText>
<AbstractText Label="CRITICAL ISSUES" NlmCategory="RESULTS">Much of the current information about redox modification of key enzymes and signaling intermediates has been gleaned from studies focused on oxidative stress situations other than the neurodegenerative diseases.</AbstractText>
<AbstractText Label="FUTURE DIRECTIONS" NlmCategory="CONCLUSIONS">The findings in other contexts are expected to apply to understanding neurodegenerative mechanisms. Identification of selectively glutathionylated proteins in a quantitative fashion will provide new insights about neuropathological consequences of this oxidative protein modification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sabens Liedhegner</LastName>
<ForeName>Elizabeth A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Xing-Huang</ForeName>
<Initials>XH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AG 15885</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 DK007319</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008803</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019636" MajorTopicYN="N">Neurodegenerative Diseases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22066468</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2011.4119</ArticleId>
<ArticleId IdType="pmc">PMC3270051</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2004 Jan 29;427(6973):461-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2004 Mar;29(3):569-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15038604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 May 28;304(5675):1328-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10810-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15252205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:305-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2862840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 1988 Aug;38(8):1285-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3399080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1989 Jan 2;476(1):160-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2521568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Aug 15;266(23):14918-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1869531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 1992 Mar;140(3):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1372157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1992;32 Suppl:S82-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1510385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 May 17;322(3):245-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8486157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1994 Sep;36(3):348-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8080242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Mar 17;405(1):21-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9094417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1997;23(1):134-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 10;272(41):25935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Nov 7;272(45):28218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9353272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 26;272(52):32773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9407051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 2;273(1):392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9417094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Transm (Vienna). 1997;104(6-7):661-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9444566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 May 1;17(9):2596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9564042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1998 May;12(7):561-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7659-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 1998 Nov;54(5):789-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9804614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 2;274(14):9427-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10092623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Neurosci. 1999;22:123-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10202534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 28;274(22):15857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10336489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 May 18;38(20):6699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 20;274(34):23787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10446139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Nov;10(11):1200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2004 Nov;17(11):1459-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15540944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Dec 17;578(3):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15589823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2005 Feb;125(2):127-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Mol Brain Res. 2005 Mar 24;134(1):18-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15790526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Mar 31;434(7033):658-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15784737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Sci Monit. 2004 Dec;10(12):RA287-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15567992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2005 Jun 2;24(24):3954-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15782121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9691-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microsc Res Tech. 2005 Jul;67(3-4):156-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16104002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Sep-Oct;7(9-10):1140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2005 Oct;315(1):8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Nov 18;280(46):38720-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2006 Feb 1;83(2):256-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2006 Apr;97(1):234-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16515547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2006 Apr;22(1):76-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16378731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Jul 1;66(13):6800-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Soc Exp Biol Med. 1999 Dec;222(3):236-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2000 Feb 1;28(3):418-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10699754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2000 Jun 23;86(12):1252-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2000 Fall;2(3):413-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11229355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 12;276(2):1335-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2001;103(2):373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11246152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 15;276(24):21618-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2001 Nov;36(2):118-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11596120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Clin Invest. 2001 Nov;31(11):1007-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2002 Feb;80(4):555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2001 Jan;76(2):442-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9745-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2002 Aug 1;35(3):419-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parkinsonism Relat Disord. 2002 Sep;8(6):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12217626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Nov;22(22):7721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 29;277(48):46566-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 13;277(50):48295-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 3;278(1):679-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 Jan;111(2):163-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12531868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2003 Jan 15;63(2):541-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12543814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Apr;17(6):717-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Apr 15;42(14):4235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12680778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12697895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 13;100(10):6145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 30;278(22):19603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12649289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Aug 1;373(Pt 3):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12723971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 24;278(43):42588-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 12;278(50):50226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 29;281(52):40354-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2007 Jan;87(1):245-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2007 Feb 27;414(1):94-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17196747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2007 Mar;28(3):138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17276138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 27;282(17):12467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2007 May 15;85(7):1506-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17387692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 May;9(5):550-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17417626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 May 11;282(19):14428-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17355958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Jun;6(3):337-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17328689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurotrauma. 2007 May;24(5):772-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17518533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jul 3;46(26):7765-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17555331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2007 Jul;21(9):2226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2007 Jun;50(7-8):983-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Aug;1767(8):1007-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 7;282(36):26562-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17613523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Oct;9(10):1647-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Nov;18(11):4681-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 9;282(45):32640-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmune Pharmacol. 2007 Jun;2(2):140-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18040839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2007 Dec 14;1185:8-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17961515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2007;7:131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17997855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 11;283(15):9986-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18250162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Jun 11;582(13):1913-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18501712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Jul 1;45(1):81-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(6):e2459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18560520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Rev. 2008 Aug;58(2):453-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18457883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 5;283(36):24801-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Sep 17;28(38):9463-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18799678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Res. 2008;41(3):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18512160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 10;283(41):27991-8003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2009 Jan;119(1):182-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2009 Feb 15;87(3):701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18831065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 20;284(8):4760-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Rev. 2009 Mar;59(2):278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18822314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2009 Apr;34(4):727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19199029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Neurol. 2009 Apr;8(4):382-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19296921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Apr 15;8(8):1105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2009 May;43(5):431-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19347761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 22;284(21):14245-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2009 May;276(9):2478-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19476489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2009 Jul;30(7):1106-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19406930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 14;284(33):22213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19549781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 28;284(35):23364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2009 Oct;16(10):1303-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19662025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2009 Sep;15(9):391-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Oct;10(10):721-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19738628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2009 Oct;23(10):3263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Nov;11(11):2717-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Nov 13;284(46):31532-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19755417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Sep;11(9):2083-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19290777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Jun 24;273(1):5-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2009 Dec;41(6):473-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuropathol Exp Neurol. 2010 Feb;69(2):155-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20084018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2010 Mar;44(3):332-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Mar 19;140(6):918-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Mar 30;49(12):2715-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20141169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rep. 2010 Jan-Feb;62(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurol. 2010 Apr;6(4):193-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20234358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 May 1;427(3):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rejuvenation Res. 2010 Apr-Jun;13(2-3):301-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20462385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 28;285(22):17077-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Jul 15;13(2):127-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20014998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Relat Cancer. 2010 Sep;17(3):553-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20410161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2010;20 Suppl 2:S487-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20413848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2010;20 Suppl 2:S357-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2010;20 Suppl 2:S513-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1276-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 1;13(5):651-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20156111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurol. 2010 Jul;6(7):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20531383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2010 Aug;299(2):L192-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20472709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Neurobiol. 2010;90:107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20692497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2010 Sep;24(6):1577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20600802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2010 Aug;16(4):335-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2010 Aug;16(4):435-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20817920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Nov 1;13(9):1375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2010 Nov 15;19(22):4529-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20829229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Oct 21;467(7318):972-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20927103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 3;285(49):38641-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 17;285(51):39646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2011 Jan;11(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20817045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Feb;1812(2):141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20600869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 23;468(7327):1115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Jan 5;31(1):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Jan 5;31(1):247-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2011 Feb;7(2):106-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2011 Feb 4;1372:133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21111718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Mar 4;144(5):689-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2011 Mar;17(3):377-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21336284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 25;286(12):10814-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21252228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2011 May;43(2):179-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21351850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 May 20;286(20):17640-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):99-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20712415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 17;286(24):21865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2011 Jul;134(Pt 7):1914-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Apr;7(4):450-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21252621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2011 Sep;18(9):1478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21597461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2011 Oct 27;194:189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21846494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2011 Dec;89(12):1997-2007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21374701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2011 Oct 17;24(10):1644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21815648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2011 Dec;132(3):280-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21810444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 2011 Nov;122(5):543-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2012 Jul;19(7):724-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21918553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Aug;20(10):1715-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2006 Sep;13(9):1454-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16311508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2006 Oct;41(4):613-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16806262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1583-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2006 Sep;10(1):59-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16988483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Transm Suppl. 2006;(70):215-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17017532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 19;443(7113):787-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 19;443(7113):796-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2006 Oct-Nov;387(10-11):1385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081111</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gao, Xing Huang" sort="Gao, Xing Huang" uniqKey="Gao X" first="Xing-Huang" last="Gao">Xing-Huang Gao</name>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Sabens Liedhegner, Elizabeth A" sort="Sabens Liedhegner, Elizabeth A" uniqKey="Sabens Liedhegner E" first="Elizabeth A" last="Sabens Liedhegner">Elizabeth A. Sabens Liedhegner</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000846 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000846 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22066468
   |texte=   Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22066468" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020